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ABSTRACT

The fields along a dielectric slab excited by a line source are found
by considering the inversion integral of a Fourier transform directly rather
than by resorting to the usual saddle point approximation techniques, The
field at any point along the surface is expressed as a superposition of
traveling waves plus a space-wa&e contribution, and conditions under which
the field may be approximated by traveling wave components alone are
discussed, Results of sample computations for both electric and magnetic

current excitation are given,
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INTRODUCT ION

In many problems of electromagnetic theory, the solution may be ob-
tained by transform techniques and it may be represented in terms of a
contour integral, the so-called "inversion integral” of the transform,

which is of the form

f(x,z) = g(x,y)e—dey
c

where x,z are the space variables, y is the transform variable and C is
the inversion contour. In some cases, the integral may be explicitly
evaluated in terms of elementary functions, but frequently, only an ap-
proximate evaluation is possible., The most common approximation used
involves an asymptotic evaluation of the far field. Since the asymptotic
series involves inverse powers of r, the distance from the source, it is
not very suitable for the calculation of near and intermediate range
fields. This paper will present an approach for evaluating the fields
at an arbitrary distance from the source along a surface wave structure.

The configuration is that of a grounded dielectric slab excited by
a line source of magnetic or electric current. The standard analysis
for such a problem, given in Collin2 for the electric current source and
later in this paper for the magnetic current source, reduces the solution
for the fields to an inversion integral, The standard treatment of the
integral is to carry out a change of variables and to approximate the

far field by the saddle-point method of integration.



If only the radiation pattern is sought, it may be obtained immediately
(for details, see Batesl) by evaluating the integrand at y = j k cos 6,
where 6 is the observation angle, However, it is frequently very useful
to know the behavior of the fields at near and intermediate distances, For
example, one can study coupling between two proximate antennas from knowledge
of such fields. In particular, if the near-field behavior is describable
as a superposition of traveling waves, the radiation pattern is easily ob-
tained by the familiar Fourier transform relation, which is particularly
simple in the case of exponentials. As an example, if the field behaves
as exp(-jPz), where P = 51 + jﬁz is in general complex, then the radiation

pattern is proportional to
[B - k cos 9[_1

where k is the free-space propagation constant and 6 is the observation
angle. Thus, the location and width of the maxima of the pattern are readily
predictable from 51 and k.

Calculation of the near field in an analogous problem has been carried
out previously by Norton4 using the saddle-point method, Basically, the
above approach was carried out with the addition of extra terms in the
expansion of the integrand to make the approximation valid in the near
field. The analytical results were shown to agree well with experimental
data as near the source as one-half wavelength,

In this paper, the near field is determined by considering the inversion

integral in a way which directly extracts the intermediate and far range




fields and simplifies computation of the near-field contribution, In addi-
tion, it obviates the necessity for the transformation of variables which is
commonly introduced in the treatment of the integral (cf. Collinz). This
method also expedites consideration of the field in terms of traveling wave
components, and facilitates investigation of conditions under which the total

field may be approximately given by the traveling wave components alone,



DERIVATION OF THE FIELD SOLUTION

The geometry associated with the problem is shown in Figure 1, The
dielectric slab has thickness t and dielectric constant K, and is infinite
in extent in the y and z directions. At x = d, a unit current flows in the
positive y direction,

The analysis presented here for a magnetic current source closely paral-
lels that given in Collin2 for an electric current, However, the problems

are not duals,

From Maxwell's equations (assuming exp(j® t) time variation)

curl

J s
1

- JjopH-K (12)

curl H

]

jw € E (1b)
we obtain the vector wave equation
V'H + kH = jweK (2)

Because the magnetic current has only a y component, the vector elec-

tric potential also has only a y component,

E = curl F (3a)

F = F =0 (3b)
z

If Y(x,z) = €F , it follows that the only field components are given by:
y
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Figure 1,
by a line source of current.



Hy = jwyd (4a)
1 0y
Ez = T (4b)
1 9y
Ex = - —e- -5-; (4c¢)

Assuming a source of unit strength, the function $ must satisfy the

differential equations

VZLIJ + kikP = € 6(z) 6(x - d) , x>0 (5a)

2
V4J+Kkil.|1=0,,‘ -t <x<0 (5b)

Defining the bilateral Laplace transform

oo

g(x,y) = Y (x,z) e" Y% dz (6)

-00

and transforming Equations (5a) and (5b) yields

2

e (vPerhg=esx-a , x>0 (72)

2

d_g_,_(Yz.,.Kki)g:O, -t<x<0 (7b)
dx

provided that the terms evaluated at * ®© in the integration by parts vanish,
This corresponds to a slight loss in the medium, and implies that k0 must be

complex instead of purely real,




If a solution for (7a) and (7b) is assumed to be of the form

glx,y) = c, exp[jf(x - )] , x2>d (8a)
=C, exp[-jL(x - d)]
+Coexp[jl(x +d)] , Ogxgd (8b)
= C4 sin(hx) + €y cos(hx) , ~tgLxg 0 (8c)
and the conditions
E =0atx=-t (9a)
E_ continuous at x = 0 (9b)
g continuous at x = d (9¢)
dg
—= discontinuous by € at x = d (9d)
dx o
are satisfied, the solution is
Je,
glx,y) = LR exp(2j4d)» exp[jl(x - d)] , x>d (10a)
J€,
=37 exp[-jf(x - d)] + R, exp[jl(x + d)]p,,0<xgd (10b)

j€ [-sin(hx) + cot(ht)cos (hx) Jexp(jLd)
= 2 — ,-tgxgd  (10c)
[%F - £ cot(ht)]

where



2 2 2
h = vy + K kO '
2 2 2
£~ = y© + ko
il - % tan(ht)
R. =
1 jl + r;—{ tan(ht)

For x > 0, g may be written in the more compact form

Je
glx, y) = - 5—% [exp(GLlx - a]) + R, exp(il]x + da])] (11)

Inverting the transform yields the expression

<
- €

Y(x,z) = 4ﬂo [exp (i€ ]x-d]) + R, exp (£ Ix+d]) ] E}—{E-%—y-—z-l-d'y 12)

Cc
for an appropriate contour C. In addition, particular care must be exercised
in selecting the proper branch of the square-root function to insure satis-
faction of the radiation condition, That branch of the square-root function
must be chosen which yields a positive imaginary part for £ = ( yz + ki)i,
Henceforth, that branch will be referred to as the proper branch, and the
one yielding a negative imaginary part will be called the improper branch,

Analysis in Collin2 for the case of a line source of electric current

yields

P -
o(x,z) = Z% [exp(j€]x-d}]) + R exp(jLx+d])] EEESTJLEL dy (13)




where ¢(x,z) = y component of the magnetic potential,

h cot(ht) + j4
-h cot(ht) + jZ

and the proper branch of the square-root function is chosen,

For the special case x = 0, Equations (12) and (13) simplify to

- €
2‘ ;l -
$(0,2) = 47T° J 9591(13 d - vz) 4, (14)
4 + % tan(nt)
C
Mo 2 exp(jld - yz)

$(0,z) = (15)

an 5T - b cot@e) Y
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THE INVERSION INTEGRAL

Formally, the inversion contour C must lie in a strip where the integrand
is holomorphic, and C must not cross a branch cut. In general, the integrands
have poles at y = ¥ J ko’ so that if kO is slightly complex, the imaginary
axis of the y-plane is a suitable contour. This complex value of k0 also
satisfies the condition mentioned in the preceding section requiring that
certain terms vanish in the transformation of the differential equation.

(In the discussion from this point on, however, k0 will be treated as if it
were purely real, Statements about poles on the imaginary axis and about
deformations of the contour C to include or exclude poles on the axis cor-
respond in actuality to limiting cases as the loss in the medium is made
vanishingly small, 1In all cases, slight loss is needed to maintain rigor,
but it adds an unnecessary complication to most of the discussion.)

The branch points at 1 j ko must be connected by a branch cut sepa-
rating the proper from the improper branch of the square-root function,
Because the contour C may not cross a branch cut, the branch points must
be connected by a cut which passes through the point at infinity, Collin2
discusses the possibility of choosing various branch cuts, finally selecting
the locus of points satisfying Im( yz + ki)% = 0, which for the lossy medium
is hyperbolic. As the loss is made very small, the branch cut approaches
that shown in Figure 2, Crossing the branch cut corresponds to switching
from the proper to the improper branch of the square root, so that the
Y~ plane may be regarded as a Riemann surface of two sheets, the top sheet
corresponding to the proper branch of the square root and the bottom sheet

to the improper branch. The contour C lies entirely in the top sheet.
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Figure 2, Branch cuts and original path of integration,
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In order to evaluate the integral along the path C, the contour is

closed in the right half-plane (for z > 0) as in Figure 2, By the Cauchy

f = —f —f —f - 27j Z residues (16)
C Cowo CA CB

For x = 0, the integral along C_, vanishes for all z > 0, Now the original

integral formula,3

integral is equal to the branch cut integral, which represents the space
wave with a continuous eigenvalue spectrum, plus the residues at the en-
closed poles, which represent traveling waves on the surface with a discrete
eigenvalue spectrum,

The usual procedure at this point is to execute a change of variables,

letting,

<
n

J k_ sin § a7)

where

[Tae)
]

n+J¢g (18)

Then in the £-plane, a stationary point (which must be a saddle point be-
cause holomorphic functions do not possess maxima and minimas) is found,
and the transformed path of integration C is deformed in the £-plane to
pass through the saddle point on the steepest-descent path. The integrand

is then expanded in a Taylor series about the saddle point, and the integral
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along the contour is evaluated in some manner, In addition, the residue
contributions of the poles of the integrand crossed in deforming the contour
of integration are added to the result.

In Nortonfs4 treatment of the near field in a similar structure, he
noted that in addition to the residues, the poles lying near the saddle
point and steepest-descent path, even though they may not be enclosed by
the contour, do in fact contribute to the field by influencing the behavior
of the integrand along the path of integration, By accounting for these in
a Laurent series about the pole location, he was able to determine the field
as near as one-half wavelength to the source.

However, the evaluation of the inversion integral may be considered

entirely in the y-plane. The branch cut integrals along C

A and CB are

deformed into integrals along C

oe 2nd CB' as shown in Figure 3. Along

these segments, the integrand decays exponentially. In deforming the con-
tour into that shown in Figure 3, the contour crosses the branch cut into
the bottom sheet of the Riemann surface, so that residues at poles in the

strip, 0 & Im(vy) < ko’ 0 < Re(y), of the bottom sheet must be considered.

R

27 j 2 (residues enclosed on top sheet)

Now,

1

(19)

2.7 2 (residues enclosed on bottom sheet)
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Figure 3, Deformed path of integration.
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Staying in the y-plane to perform the integration has certain advan-
tages over integrating in the transformed g-plane. First, the path is a
straight line, which is convenient for numerical evaluation of the integrals,
(It may be interesting to note that this path of integration is very close
to the steepest-descent path for all distances along the surface except in
the neighborhood of z = 0,) Secondly, it is quite easy to define the region
in which to search for poles crossed in deforming the contour, since it is
a semi-infinite strip in the bottom sheet of the Riemann surface., Also,
determining at what point to neglect poles in the strip is simplified, as
will be shown in the discussion of the behavior of the integrand in the

next sections,
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BEHAVIOR OF THE INTEGRAND
The poles of the integrands in (14) and (15) are the zeros of
J‘(y2 +1i)é+~% (yz +‘Kki)itan[(y2 + Kki)%t] (20a)
and
.]'(Y2+ki)é— (Yz + Kk(z))é cot[(y2 +Kk(2))% t] (20b)

for magnetic current and electric current, respectively. Since the contour
of integration has been deformed to enclose a strip of the bottom sheet of
the Riemann surface, roots corresponding to both branches of the square-root

function must be found.

2
On the top sheet, letting y2 = (K-~-1) ko t2 - h2 tz, roots of (20a)

and (20b) are simultaneous solutions of

ht
(7?) tan (ht) =

y

(21a)

2 2 2 2 2

(ht)” +y = (K- 1) ko t =r

and
(ht) cot (ht) = - y

(21b)

2 2 2 2

(ht)2 +y = (K

l)kot =r
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respectively.
Plotting graphs of these equations in (ht) and y, and solving for vy ,
shows that:
1. No solutions of this type occur for K < 1, because the radius
r must be real.
2, For ‘electric excitation, no solutions occur for (K - 1)é
k0 t < 1 because the circles do not intersect the curve
(ht) cot (ht) unless the radii are at least unity.
3. Values of y which are solutions are purely imaginary, and
solutions occur in conjugate pairs,
4, For each value of K and ko’ there are only finitely many

simultaneous solutions of the pairs of equations.

Calculating the residues at the poles corresponding to these purely
imaginary values of y yields a factor proportional to exp(-yz). If

Y = ¥ j B, the + sign corresponds to a wave propagating in the +2z direction

without attenuation but evanescent in the +x direction, i.e., a surface wave,

In order to exclude the waves propagating in the -z direction, the contour
of integration C along the imaginary axis must be deformed slightly to in-
clude the poles on the positive imaginary axis and to exclude those on the
negative imaginary axis.

For the slab with K = -~ 0.5, excited by a magnetic current, there exist
in the top sheet a set of poles which have positive real parts and negative
imaginary parts, corresponding to waves decaying in the +z direction, but
with a phase variation in the opposite sense. (To see the influence of such

poles in the field solution, see Figure 7(b) for K= -0.5.) There are
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infinitely many of these "backward wave poles, and asymptotically, their
separation is TM/t, Because the residues are proportional to exp(- yz),
though, for non-zero values of z, only the contributions of the first few
with smallest real parts are significant.

On the bottom sheet, there exist an infinite number of complex roots
of (20a) and (20b). However, only those within the strip 0  Im( y) sﬁko,
0 Re(‘y) are enclosed by the contour of integration. If there are in-
finitely many of these poles within the strip, the distance between adjacent
poles is given by 7/t. As before, the residues vary as exp(—‘yz), so that
only the first few need be considered. These poles are commonly called
leaky wave* poles,

These leaky wave poles appear to contribute terms to the field expan-
sion which, although properly behaved in z, appear to grow without bound
in x. However, it must be recalled that the leaky wave residues plus the

integrals along C

At and C

B? represent the original branch cut integral, and
constitute the space wave. Leaky waves permit partial expansion of the
fields in terms of the traveling wave behavior convenient for investigation.
Even though one cannot continue to use the leaky wave representation for
arbitrary distances from the source at arbitrary observation angles, this
representation is certainly valid along the surface. From knowledge of the

fields along the surface, one can then use Huygen's principle6 to evaluate

the far fields at arbitrary observation angles.

Tamir, T. and Oliner, A, A,, "Guided Complex Waves, Part 1," Proc. IEE
(London), 110, No. 2, 1963, pp. 310-324.
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Leaky wave poles near the path CB' can also contribute to the field
expansion by influencing the behavior of the integrand. Additional complex
poles on the bottom sheet which are not within the strip may also influence
the behavior of the integrand, so that if it is desired to express the fields
only in terms of traveling waves and to neglect the radiated field, careful
investigation of additional complex poles in the bottom sheet helps in deter-
mining conditions under which the integral may be neglected.

It has been shown by Bates1 that for slabs with dielectric constant
greater than unity, all complex roots must lie on the bottom sheet of the
Riemann surfaceg, It is suspected that the same result holds for all non-
negative values of K, and numerical calculations for several cases with
K = 0.5 tend to confirm this. However, for K = - 0.5, backward wave poles
occurred in the top sheet, so that the result is not true in general. Back-
ward wave modes were not excited, though, by the electric current in the
cases considered.

In Figures 4(a) and 4(b), locations of the surface wave, leaky wave
and backward wave poles are shown for two sets of parameters, Table 1
summarizes the types of poles found for several cases of both electric

and magnetic excitation,
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Figure 4(b). Pole locations for K= -0.5, k_ = 3.0,




TABLE 1

21

TYPES OF POLES FOR VARIOUS PARAMETERS AND EXCITATIONS

Excitation K k Surface Waves Leaky Waves Backward Waves
Electric 2, 0.5 No No No
Electric 1.5 Yes Yes No
Electric .5 2.5 Yes Yes No
Electric 0.5 1.5 No No No
Electric . No Yes No
Electric .5 ) No Yes No
Electric -0.5 o, No No No
Electric -0.5 1. No Yes No
Electric -0,5 2.5 No Yes No
Magnetic 0.5 Yes Yes No
Magnetic Yes Yes No
Magnetic 2.5 2,5 Yes Yes No
Magnetic 0.5 No Yes No
Magnetic No Yes No
Magnetic 0.5 2,5 No Yes No
Magnetic -0.5 0.5 No No Yes
Magnetic -0.5 1. No No Yes
Magnetic -0.5 2.5 No No Yes
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COMPUTAT IONS

The computation of ¥ and ¢ for magnetic and electric excitation, respec-
tively, was divided into two main parts—-location of poles of the integrand
and calculation of residues at these poles, and computation of the integrals

on C ¢ and C

A B**

In order to find the poles of the integrands, i.e., zeros of (20a) and
(20b), it was found necessary to make very close estimates of the actual
locations, To secure these estimates, values of Equations (20a) and (20Db)
were calculated at points of a fine grid in the regions where roots were
being sought. The signs of the real and imaginary parts were studied to
determine points at which both parts changed sign simultaneously, Once
estimates of the zero locations were found, these estimates were used in
the Newton-Raphson method,5 modified for complex arithmetic, to find the
values to greater precision, To obtain the locations of surface wave poles,
graphical solutions of (2la) and (21b) provided good estimates, and the
Newton-Raphson method was again used to provide more precise values. For
leaky wave and backward wave poles, it was observed that the residues de-
cayed exponentially, so that for a fixed lower bound on z, an upper bound
on the real part of y could be easily determined such that residues at
poles with greater real parts would be negligibly small. Thus, in each
instance, the regions in which poles were sought were rectangular regions
of the y- plane.

Calculation of the integrals along C and CB' was done using a

A'
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*

modification of RIEMAN, a FORTRAN II subroutine for numerical integration.
Provided with a given error bound, RIEMAN divides the interval of integra-
tion into subdivisions of proper size to assure an answer within the given

error limit,

Along CA' and CB" the integrand decays at least as rapidly as

exp(-az), where y = a + j k onC

At and CB" If the infinite path of

integration is replaced by the finite segment from 0 + j ko to al + J ko’
where al is chosen so that, say, alz > 10, the error introduced is quite
small, The integrals were ;pproximated by integrals along such finite
segments. Several cases were checked by extending the length of the interval
of integration by at least fifty per cent; no significant difference in the
values obtained was noted.

All computations were made on the IBM 7094 computer of the University

of Illinois Department of Computer Science. All programming was done in

FASTRAN, a fast~compiling version of FORTRAN II.

Russell, David L., "AND 107 Numerical Integration Using Midpoint
Procedure with Preferential Interval Placement,’ Argonne
National Laboratory, Applied Mathematics Division, August
1960,
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RESULTS OF THE COMPUTATIONS

Results of computations for the various choices of wave number and
dielectric constant, for both magnetic and electric excitation, are shown
in Figures 5(a) - 5(£), 6(a) - 6(f) and 7(a) - 7(b). In every case, the
parameters t, the thickness of the slab, and d, the height of the source
above the slab, were fixed (t = 2, d = 0.1). The quantities plotted in
Figures 5 and 6 are the magnitudes of the y component of the vector poten-
tial. The phases of selected cases are given in Figures 7(a) and 7(b).

As would be intuitively expected, the field grows quite large as z
becomes small, These results agree well in their general behavior with
those obtained by Norton4 both analytically and experimentally in an
analogous problem, For the cases in which no poles of the integrand were
found, it was possible to directly compute the inversion integral along
C for z = 0, 0,1 and 0.25. The values so obtained agree extremely well
with the extrapolation of the respective curves to zero. For other cases,
however, direct computation of the inversion integral for z = 0 yielded
values much smaller than would otherwise have been expected. It is un-
certain in these cases whether the apparent inconsistencies arise from
errors in the computation of the inversion integral introduced by poles
on the path of integration (which are avoided by slightly deforming the
path) or whether the fields in fact peak for some very small value of 2z
and decrease as z approaches zero, In one of the cases measured by NortOn,4
such behavior is in fact evidenced, as the field peaked and then decreased

sharply for smaller values of z. The behavior evinced in Figure 6(e)
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further suggests that such behavior may in fact hold for other cases, but
this hypothesis has not been confirmed.

In Figures 8(a) and 8(b), the magnitude of the total vector potential
is plotted along with the magnitude of the total traveling wave contribu-

tion to the field. That is, in the latter case, the integrals on C

At and

CB" which constitute the space wave, have been neglected, Because of
the relative difficulty of computing such integrals numerically, it would

be valuable to determine under what conditions the field can be suitably
approximated by neglecting these integrals,

Computing the residue contribution for each set of parameters and
comparing it with the total field indicates that, in most cases, the field
along the surface may be reasonably approximated by the residue contribution
alone for ko z>T, i,e., for z greater than one-half wavelength in free
space, However, great caution must be exercised in those cases when only
a few leaky wave poles are found. In addition, as was mentioned previously,
other poles on the bottom sheet of the Riemann surface may contribute
strongly to the field by influencing the behavior of the integrand along
CB' if they lie near the path. In any event, careful investigation of
poles in the bottom sheet on both sides of the path of integration is

advisable before neglecting the contribution of the integrals along the

two segments,
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Figure 8(b). Residue contribution and total field, K = -0,5,
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SUMMARY

The near fields for a grounded dielectric slab excited by a line
source of magnetic or electric current were calculated for several fre-
quencies and for dielectric constants of 2.5, 0,5 and - 0.5, The deriva-
tion of the solution in a Fourier inversion integral was obtained in a
conventional approach, but the inversion of the transform was treated
not by the usual saddle-point method, but by a very direct method in the
plane of the complex transform variable y.

The fields were determined in terms of a superposition of traveling
waves plus a contribution given by the space wave, Fields were found in
some cases as near as one-tenth wavelength to the source. In addition,
conditions under which the field may reasonably be approximated by the
traveling waves alone were discussed,

Possibilities for further study include treatment of the extreme near
field by direct numerical integration of the complex inversion integral,
but in particular, extension of the methods used in this problem to related
problems in which an inversion integral must be evaluated approximately is

suggested for further work,
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